
SATIN: Logical Mobility for
Mobile Self-Organisation

Stefanos Zachariadis

http://www.cs.ucl.ac.uk/staff/s.zachariadis

Outline

• Background

• Component Model

• Middleware System

• Implementation

• Related Work

• Future Work

• Conclusion

Trends in (Mobile) Computing
(Hardware)

• They are getting faster

• They are getting connected

• They are getting smaller

• They are getting everywhere

Trends in (Mobile) Computing
(Software)

• Not much innovation

• Monolithic apps

• Lack of middleware

• Static apps

Trends in (Mobile) Computing
(Example)

1997:

US Robotics Pilot 1000

128KB 16MHz Serial
160x160BW

2003:
Palm Tungsten T3

64MB 400MHz
Serial/USB/Bluetooth/Infrared
320x480 24bit, Sound, Expansion

Trends in (Mobile) Computing
(Example)

1997:

US Robotics Pilot 1000

PalmOS 1.0 (DateBook)

2003:
Palm Tungsten T3

PalmOS 5.2 (Calendar)

The Mobile Environment

• Limitations (compared to traditional computing)
– Memory, battery power, CPU power, erratic (expensive)

connectivity
– Improving but lagging still

• Different usage paradigms
– Input/output
– Speed, ease of use, frequent but brief usage

• E.g. Check schedule

– Reports show that users rarely install applications on
mobile devices
• Applications need to cater to users’ needs throughout the

device’s lifetime

A Dynamic Environment

• Heterogeneity!
– Device/Hardware (Physical)

– Software/Middleware (Logical)

– Network

• Changes to the environment
– => Changes to application requirements.

Self - Organisation

• System adaptation to accommodate
changes to its requirements

• Suitability for mobility

• Allows systems to gain new functionality

– Reacting to changes

• Approaches

– Expert Systems

–Genetic Algorithms

Logical Mobility

• Ability to sent parts of an application (or
migrate/clone a process) to another host

• Popularised by Java
• Classification into paradigms
– Client/Server (CS)
– Remote Evaluation (REV)
– Code on Demand (COD)
– Mobile Agents (MA)

• Various middleware (mobile & stationary)
systems exploit this

Components

• Component = functionality

• Coarse-grained guide

• Monolithism vs Componentisation

• Collocation vs Distribution
– Complexity

– Size

– Networking

– Autonomy

SATIN

• System Adaptation Targeting
Integrated Networks

• Component Model & Middleware

• Minimal Footprint

• Interaction & Autonomy

Component Model Outline

• Local Component Model

• Distribution Built into the Model
– But not components

– Using Logical Mobility

• Applications and the system itself are
components

Components

• Encapsulation of functionality

• Facets

• Properties & Attributes
– Extensible

– Heterogeneity (Debian)

– Identifier, Versioning, Dependencies
• <ID, “identifier”>

• <VER, version number>

• <DEP, dependencies>

Container

• Component Specialisation

• Registry/host of components
– References to all components

• One on each instance

• Dynamic Registration/Removal
(delegated)
– Registrars can have different policies

Distribution and Logical
Mobility

• Provided by the model as a service

• Logical Mobility Entities

• Logical Mobility Units

• Reflective Components

• Deployer

Logical Mobility Entities &
Units

• Logical Mobility Entity (LME)
– Generalisation of class, object, data

• Logical Mobility Unit (LMU)
– Composition of LMEs

– Attributes & Properties

– Handler

– Fine grained mobility

Reflective Components

• Components that can be changed
– LMU Recipients

– The Container is Reflective

– Inspect LMUs
• Acceptance

• Rejection

• Partial Acceptance

Deployer

• Component Specialisation

• At least one in each instance
– Advertised

• Abstracting
sending/receiving/requesting LMUs

• Uses attributes for matching

• Synchronous and Asynchronous
primitives

Model: Recap

Middleware

• Advertising & Discovery
– Advertisable Components
• Advertising message

– Advertiser Components
• Register Advertisable Components

– Discovery Components
• Register Listeners

Logical Mobility

• Finer Grained

• Not only Components, but
Classes/Objects
– Patching

• Logical Mobility as a computational
paradigm

Implementation

• Some Numbers:
– Prototype

• 62K dist/satin-20030714.jar

• 24K lib/kxml2.jar

• 40K lib/μcode.jar

Example Application:
Dynamic Launcher

• Similar in Functionality to PDA Launchers

• Installs Components from multiple sources
– Centralised Source, p2p...

– Uses any discovery components installed to find
components available

– Uses Deployer to request and receive
components

• Transparent update
– Using any Discovery components installed and

Deployer to find and install updates

Dynamic Launcher [2]

Dynamic Launcher [3]

More Numbers

• Times
– Startup Time on PDA: 21 seconds
– Memory Usage on PDA: 1155KB
– Update to PDA from peer: 2063 ms

Related Work

• Logical Mobility Middleware
– Limited Use of LM
• System Reconfiguration (UIC, ReMMoC)

• Too Specific (Lime, PeerWare, Jini, XMIDDLE)

– Not geared for mobility
• Disconnections pre-announced (Fargo-DA)

• Fixed advertising and discovery (one.world)

Related Work (2)

• Component Model Systems
– Distributed ones unsuitable
• Large

• No autonomy (P2PComp, PCOM)

– Local Component Models
• Distribution as a service

• Heterogeneity

• Some make a distinction between Component
providers and consumers (Beanome/OSGi)

Future Work

• Re-implementation

• More Testing

• Applications

Conclusion

• The SATIN Component model

– Distribution as a service

– Attributes for heterogeneity

– Applications & System: interconnected local
components

– Reconfiguration of Local Components

• The SATIN Middleware System

– Componentised Advertising and Discovery

– Logical Mobility as a Computational
Primitive

