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Trends in (Mobile) Computing
(Hardware)

• They are getting faster
• They are getting connected
• They are getting smaller
• They are getting everywhere



Trends in (Mobile) Computing
(Software)

• Not much innovation
• Monolithic apps
• Lack of middleware
• Static apps



Trends in (Mobile) Computing
(Example)

1997:

US Robotics Pilot 1000

128KB 16MHz Serial 
160x160BW

2003: 
Palm Tungsten T3

64MB 400MHz
Serial/USB/Bluetooth/Infrared
320x480 24bit, Sound, Expansion



Trends in (Mobile) Computing
(Example)

1997:

US Robotics Pilot 1000

PalmOS 1.0 (DateBook)

2003: 
Palm Tungsten T3

PalmOS 5.2 (Calendar)



The Mobile Environment 

• Limitations (compared to traditional computing)
– Memory, battery power, CPU power, erratic (expensive) 

connectivity
– Improving but lagging still

• Different usage paradigms
– Input/output
– Speed, ease of use, frequent but brief usage 

• E.g. Check schedule
– Reports show that users rarely install applications on mobile 

devices
• Applications need to cater to users’ needs throughout the 

device’s lifetime



A Dynamic Environment

• Heterogeneity!
– Device/Hardware (Physical)
– Software (Logical)
– Network

• Changes to the environment 
– => Changes to application requirements.



Self - Organisation

• System adaptation to accommodate 
changes to its requirements

• Suitability for mobility
• Allows systems to gain new functionality
– Reacting to changes

• Approaches
– Expert Systems
– Genetic Algorithms



Logical Mobility

• Ability to sent parts of an application (or 
migrate/clone a process) to another host

• Popularised by Java
• Classification into paradigms
– Client/Server (CS)
– Remote Evaluation (REV)
– Code on Demand (COD)
– Mobile Agents (MA) 

• Various middleware (mobile & stationary) 
systems exploit this



Components

• Component = functionality
• Coarse-grained guide
• Monolithism vs Componentisation
• Collocation vs Distribution
– Complexity
– Size
– Networking
– Autonomy



SATIN

• System Adaptation Targeting Integrated 
Networks

• Component Model & Middleware
• Minimal Footprint
• Interaction & Autonomy



Component Model Outline

• Local Component Model
• Distribution Built into the Model
– But not components
– Using Logical Mobility

• Applications and the system itself are 
components



Components

• Encapsulation of functionality
• Facets
• Properties & Attributes
– Extensible
– Heterogeneity (Debian)
– Identifier, Versioning, Dependencies
• <ID, “identifier”>
• <VER, version number>
• <DEP, dependencies>



Container

• Component Specialisation
• Registry/host of components
– References to all components

• One on each instance
• Dynamic Registration/Removal 

(delegated)
– Registrars can have different policies

• Listeners/Custom Notification



Distribution

• Logical Mobility Entity (LME)
– Generalisation of class, object, data, 

component

• Logical Mobility Unit (LMU)
– Composition of LMEs
– Attributes & Properties
– Handler
– Fine grained mobility



Reflective Components

• Component Specialisation
• Components that can be changed
– LMU Recipients
– The Container is Reflective
– Inspect LMUs
• Acceptance
• Rejection
• Partial Acceptance
• Handler Instantiation



Deployer

• Component Specialisation
• At least one in each instance
– Advertised

• Abstracting sending/receiving/requesting 
LMUs

• Uses attributes for matching
• Synchronous and Asynchronous primitives
– Operation Formalised using Mobile Unity



Middleware

• Fully componentised
• Advertising & Discovery
– Advertisable Components
• Advertising message

– Advertiser Components
• Register Advertisable Components

– Discovery Components
• Listeners / Notification



Logical Mobility

• Finer Grained
• Not only Components, but 

Classes/Objects
– Patching

• Logical Mobility as a computational 
paradigm



Example Application: Dynamic 
Launcher

• Similar in Functionality to PDA Launchers
• Installs Components from multiple sources
– Centralised Source, p2p...
– Uses any discovery components installed to find 

components available
– Uses Deployer to request and receive components

• Transparent update
– Using any Discovery components installed and 

Deployer to find and install updates



Dynamic Launcher [2]



Dynamic Launcher [3]



Example Application: Music 
Player



Example Application: Scripting 
Framework

=Initialising the Container=

=Container (ID=STN:CONTAINER,FACETS=Discovery,VER=1) 

  initialised=

=Creating Self=

=Registering Self (ID=STN:SHELL)=

=This is SATIN version 0.8=

=Running on Linux 2.6.51.358 / i386=

=Hostname: hamsalad.cs.ucl.ac.uk=

=Java 1.4.2_04 / Sun Microsystems Inc.=

=A reference to the container will be made available via the 

  object reference container=

=Starting the beanshell...=

BeanShell 2.0b1.1  by Pat Niemeyer (pat@pat.net)

bsh % Component c=container.getComponent(``STN:SHELL'');



Some Numbers

• J2ME cdc personal profile
• 84KB jar
• Dynamic Launcher

– 22KB jar
– Startup Time on PDA: 21 seconds
– Memory Usage on PDA: 1155KB
– Update to PDA from peer: 2063 ms

• Music Player
– 3.6KB jar application

– 105KB jar codec

• SATIN Scripting Framework
– 280.6KB jar



Related Work

• Logical Mobility Middleware
– Limited Use of LM
• System Reconfiguration (UIC, ReMMoC)
• Too Specific (Lime, PeerWare, Jini, XMIDDLE)

– Not geared for mobility
• Disconnections pre-announced (Fargo-DA)
• Fixed advertising and discovery (one.world)



Related Work (2)

• Component Model Systems
– Distributed ones unsuitable 
• Large
• No autonomy (P2PComp, PCOM)

– Local Component Models
• Heterogeneity
• Some make a distinction between Component 

providers and consumers (Beanome/OSGi)



Future Work

• Applications
• Integration with CARISMA
• PhD Thesis ?



Conclusion
• The SATIN Component model

– Distribution as a service

– Attributes for heterogeneity

– Applications & System: interconnected local components

– Reconfiguration of Local Components

• The SATIN Middleware System

– Componentised Middleware (Advertising and Discovery)

– Logical Mobility as a Computational Primitive

• Security?


