
Q-CAD: QoS and Context Aware
Discovery Framework for Mobile

Systems

Licia Capra, Stefanos Zachariadis, Cecilia Mascolo



Outline

● Background / Motivation
● Model
● Discovery Protocol
● Architecture
● Implementation
● Conclusion



Background

● Pervasive Computing Environment
– Users reason in tasks

● Task:
– “I want to print a picture”

● Binding to a remote service
● Getting the code to talk to the remote service

● Many choices for each task to be made
– Context

– QoS

–



Dealing With Choice

● Black Box Approach
– System automatically decides

● Open Approach
– User/Programmer decides



Q-CAD

● Application – Aware framework
● QoS-based Context – Aware Resource
Discovery

● Context
– Application Profile

● QoS
– Utility Function



Case Study / Example

Proactive vs Reactive



Q-CAD Model: Assumptions
● Component-based system
● Remote Resource

– Service, component, sensor

– Identified by URI

– Resource Descriptor
● Named key, value pairs

● Binding
– Association of remote resource with local
component

– Deployment of remote component, locally



Resource Descriptor
(ID, QCAD:displayVideo)

(type, component)

(code, display800600.jar)

(resolution, 800x600)

(version, 2.1)

(platform, JVM2)

(size, 70KB)

(cost, $10)

(memory, 2)

(battery, 4)



Q-CAD Model: Assumptions (2)

● Context
– Remote, Local

● Proactive and Reactive Discovery
– Model and protocol same

● Independent of underlying SDP
– Not quite true :-)

● Modeling of Requirements in Application
Profiles and Utility Functions (CARISMA)



Q-CAD Model: Application Profiles

● Defines what to do
● Context-Aware Discovery
● Each Session Has:

– Trigger
● Local/Remote

– Where to Bind (Remote Resource)

– Where to Bind To (Local Component)

● Different Checks at Different Stages



Application Profile: Proactive
<LOCAL_CONTEXT/>

<REMOTE_CONTEXT/>

<BIND>

<BIND_RESOURCE name="printPicture">

<REMOTE_CONTEXT id="1">

<CONDITION name="diskSpace" op="greaterThan"
value="100MB"/>

</REMOTE_CONTEXT>

</BIND_RESOURCE>

</BIND>



Application Profile: Proactive (2)
<ADAPT>

<ADAPT_COMPONENT id="1">

<LOCAL_CONTEXT id="2">

<CONDITION name="battery" op="greaterThan" value="30%"/>

</LOCAL_CONTEXT>

<REMOTE_CONTEXT/>

<ATTRIBUTES>

<ATTRIBUTE key="protocol" op="equals"
value="encryptedUpload"/>

</ATTRIBUTES>

</ADAPT_COMPONENT>

</ADAPT>



Application Profile: Reactive
<LOCAL_CONTEXT id="1">

<CONDITION name="battery" op="greaterThan" value="30%"/>

</LOCAL_CONTEXT>

<REMOTE_CONTEXT id="2">

<ATTRIBUTES>

<ATTRIBUTE key="sensor" op="equals" value="videoSensor"/>

<ATTRIBUTE key="resolution" op="equal" value="800x600"/>

<ATTRIBUTE key="format" op="equals" value="jpeg"/>

</ATTRIBUTES>

</REMOTE_CONTEXT>

<BIND>

<BIND_RESOURCE name="videoSensor"/>

</BIND>



Application Profile: Reactive (2)
<ADAPT>

<ADAPT_COMPONENT id="3">

<LOCAL_CONTEXT/>

<REMOTE_CONTEXT/>

<ATTRIBUTES>

<ATTRIBUTE key="type" op="equals" value="displayVideo"/>

<ATTRIBUTE key="cache" op="greaterThan" value="1024KB"/>

<ATTRIBUTE key="resolution" op="greaterThan"
value="800x600"/>

</ATTRIBUTES>

</ADAPT_COMPONENT>

</ADAPT>



Utility Functions

● Suppose many resources match the
conditions

● Need to Select
● Criterion: QoS requirements

– Encapsulation as Utility Functions

– Executed against Resource Descriptors
● Locally or Remotely

● Automation vs Application Input



Utility Function

<RETURN>

<EVALUATE>

<ATTRIBUTE key="cost" op="greaterThan" value="10$"/>

</EVALUATE>

<FILTER>

<ATTRIBUTE key="cost"/>

</FILTER>

</RETURN>

<MAXIMISE>

<ATTRIBUTE key="battery" weight="10"/>

<ATTRIBUTE key="memory" weight="5"/>

</MAXIMISE>



Discovery Protocol

● 3 Step Protocol
– Matching

– Evaluation

– Selection



Discovery Protocol Sample



Discovery Protocol Sample (2)



SATIN
● Local component metamodel

– instantiated as middleware system

● Logical Mobility as 1st class citizen
● Uses key,value attributes for reasoning

– locally and remotely

– Uses dynamic code to match attributes

● Pluggable Advertising and Discovery
Framework

● Provides means but not decision logic
(laissez - faire)



Q-CAD Architecture Outline

● Engineered using SATIN



Q-CAD Architecture



Implementation

● BSc Thesis
● Using Multicast and Publish Subscribe
● Preliminary results available
● More work (Afra) during the summer



Future Work

● Ontology Translation
● Trust
● Message Routing



Related Work

● Directory based
– UPnP, Jini

● Decentralised
– SSDP, DEAPspace, Lanes, JXTA

– Q-CAD can be built on top

● Semantic Routing
– Q-CAD richer



Conclusion

● Q-CAD
– QoS and context aware framework for resource
discovery

● Component, Sensor, Service

– Application Profiles

– Utility Functions

● Q-CAD is current


