
Adaptable Mobile Applications:
Exploiting Logical Mobility in Mobile

Computing

Stefanos Zachariadis, Cecilia Mascolo &
Wolfgang Emmerich

Department of Computer Science
University College London

Gower Street
London, WC1E 6BT

 http://www.cs.ucl.ac.uk/staff/s.zachariadis

Outline

• Physical Mobility
• Logical Mobility
• Motivation
• Limitations of related work

– Mobile application development

• Proposed solution: SATIN
• Future Work

Outline

• Physical Mobility
• Logical Mobility
• Motivation
• Limitations of related work

– Mobile application development

• Proposed solution: SATIN
• Future Work

Physical Mobility

• Ubiquity of mobile computing devices
– Laptops, PDAs, cellular phones

• Variable connectivity
– Bluetooth, 802.11x, GSM/GPRS/CDMA/…/3G,

infrared, docking
• Nomadic, ad-hoc, base station mobility
• Variable in cost and type

• Numbers increasing
– 2002: 15.5 million PDAs, 2005: 700 million

Bluetooth chips (Gartner)

Characteristics

• Limitations (compared to traditional computing)
– Memory, battery power, CPU power, erratic (expensive)

connectivity
– Improving but lagging compared to desktop machines

• Different usage paradigms
– Input/output
– Speed, ease of use, frequent but brief usage

• E.g. Check schedule
– Reports show that users rarely install applications on mobile

devices
• Applications need to cater to users’ needs throughout the

device’s lifetime

Characteristics (2)

• Heterogeneity!
– Device/Hardware (Physical)
– Software/Middleware (Logical)
– Network

• Very dynamic environment

Outline

• Physical Mobility
• Logical Mobility
• Motivation
• Limitations of related work

– Mobile application development

• Proposed solution: SATIN
• Future Work

Logical Mobility

• Ability to sent parts of an application (or
migrate/clone a process) to another host

• Popularised by Java
• Classification into paradigms

– Client/Server (CS)
– Remote Evaluation (REV)
– Code on Demand (COD)
– Mobile Agents (MA)

• Various middleware (mobile & stationary)
systems exploit this

Examples of Logical Mobility

• Antivirus updates
• RPCs
• Browser “enhancements”
• Ringtone/Game download
• Distributed computing
• Automatic update rollouts

Advantages of Logical Mobility

• Flexibility
– Dynamic applications

• Automatic software update
– Maintenance

• New abilities
• Use of remote resources

Outline

• Physical Mobility
• Logical Mobility
• Motivation
• Limitations of related work

– Mobile application development

• Proposed solution: SATIN
• Future Work

Observed Trends

• Further decentralisation of computing
• Computers: Smaller, faster, more resources,

more personal, ubiquitous
– Users are starting to carry portable processing

environments of respectable computing ability
• Networking is pivotal

– Devices can connect to various different types of
networks at different situations: ad-hoc
(Bluetooth, IrDA), the Internet (GSM/GPRS,
802.11b, …)

Motivation

• Potential of ubiquity of current devices largely
untapped

– Little interoperability because of heterogeneity
• New class of applications
• Investigate the use of Logical Mobility in mobile

computing middleware
• Prove that logical mobility can bring tangible benefits

to mobile application developers and users
– Benefits include faster operation, less user-interaction,

services offered based on context and location, reduced cost,
better user experience

• Self-Organizing Systems

Outline
• Physical Mobility
• Logical Mobility
• Motivation
• Limitations of related work

– Mobile application development

• Requirements
• Proposed solution: SATIN
• Future Work

Deficiencies of Related Work

• Limited use of LM
– Usage of LM to provide reconfigurability to

middleware
• ReMMoC, UIC
• Allows interaction with services provided by

heterogeneous platforms/middleware systems
– Usage of particular LM paradigms to provide

particular services to applications
• LIME (MA), PeerWare (REV), Jini (COD)

– Others are not really geared for mobile networks
• In Fargo-DA disconnections are announced

Current Mobile Application
Engineering (PalmOS)

• Event driven, single threaded applications
• Files (Applications & Data) stored in main

memory (usually 8MB).
– Files stored as databases (collection of records)

• Developers compile application into a single
file (Palm Resource, PRC)

• Application data can be stored in multiple Palm
database files (PDBs).

Current Mobile Application
Engineering (2)

• Very limited use of libraries
• Applications have a unique identifier,

Creator ID (4 bytes)
– Registered on a central database
– Identifies PRCs & PDBs to the OS

What is Wrong with this
Model?

• Very limited code sharing
– On the device itself, between different devices

• Monolithic applications
• Difficulty to update application
• No versioning scheme for libraries
• No standard way to know which PRCs a device

has.
• Difficulty to install applications

– Statistics suggest that majority of users never
install any 3rd party application

Outline

• Physical Mobility
• Logical Mobility
• Motivation
• Limitations of related work

– Mobile application development

• Proposed solution: SATIN
• Future Work

Proposed Solution: SATIN

• Component based middleware
• Stresses modularity

– Encourages decoupling of applications into modules
• Allows for static & dynamic configuration
• Minimal footprint
• Relies on developers following guidelines
• Offer usage of LM
• Lightweight

– Runs in PDAs
• Network-independent

– IP

Capabilities

• A SATIN component is a capability
– Ranges from applications to libraries

• SATIN applications are collections of capabilities with an
“executable” one.

• SATIN is a collection of capabilities
– A capability provides some functionality to either

the user or other capabilities.
• Provide a versioning scheme

– Revisions of a capability
• Unique Identification
• Dependency scheme

The Core

• The SATIN Core is the main component
of the middleware

• The Core is a registry for Capabilities.
– All Capabilities can be accessed via the Core

• The Core identifies Capabilities by their
identifier

• Core is a Capability itself

The Core & The Registrar

• Registration of new Components through
a Registrar

• If no registrar is available, then SATIN is
statically configured

• Registrar can receive capabilities from
many sources (local & remote)

• Implementations of the Core may be
distributed

Example Capabilities:
Advertising and Discovery

• Paramount importance
• Heterogeneity!

– Different ways to do it
– Multicast
– Centralised registry (Core)
– Interoperability with other middleware

platforms (e.g. Jini)

Example Capabilities:
Advertising and Discovery [2]

• What to advertise?
– Capabilities

• Advertising and Discovery techniques are themselves SATIN
capabilities

• Capabilities choose which advertisers can advertise them
– Using the Capability Identifier

• Capabilities choose advertising message
– XML based

• <capability id=FTP><port>21</port></capability>
– Advertiser-independent

• Recursion:
– Advertisers advertising advertisers

• Discovery of multicast groups, etc.

Principles: Logical Mobility

• Encapsulation
– LM paradigms
– Language abstractions
– Group various LM entities together
– Signature
– Identification
– Requesting/sending
– Deploying (containers/hosting)

SATIN’s Approach to LM

• Decoupled nature of SATIN offers itself
for use of LM
– Capabilities

• Three entities represent LM to SATIN
– Logical Mobility Units (LMUs)
– Extendable Capabilities
– Logical Mobility Deployment Capability

(LMDC)

LMUs

• Container
• Sent around the network
• Encapsulation of Classes, Object, RPCs and Data
• Dependency scheme based on capability identification
• Size information
• Source & Target information
• Can be Signed
• Unpacker

– Threads

Extendables/LMDC

• Extendable capabilities can receive and
host LMUS
– Can accept or reject the LMU
– Core or any other capabilty

• LMDC abstracts the usage of Logical
Mobility
– Requesting, sending, receiving, deploying

Example Application: Dynamic
Launcher

• Similar in Functionality to PDA Launchers
• Installs Capabilities from multiple sources

– Centralised Source, p2p...
– Uses any discovery techniques installed to find

capabilities available
– Uses LMDC to request and receive capabilities

• Transparent update
– Using any discovery techniques installed and LMDC

Dynamic Launcher [2]

Dynamic Launcher [3]

Some Numbers

• Prototype
– J2SE
– Personal Java & J2ME considered

• Sizes:
– 62K dist/satin-20030714.jar
– 24K lib/kxml2.jar
– 40K lib/μcode.jar

• Times
– Startup Time on PDA: 21 seconds
– Memory Usage on PDA: 1155KB
– Update to PDA from peer: 2063 ms

Future Work

• Further Evaluation
– More Applications
– Comparison to similar applications that don't use

LM

• New Classes of Applications Possible
– SelfOrganisation

• Scalability

Conclusion

• Physical Mobility
– Increased popularity
– Increased abilities

• Logical Mobility
– Principles
– Harness potential of mobile devices

• SATIN
– Superset of previous approaches
– Flexible use of LM to applications

