Architecting a Plug-in Based Steam Turbine Design Tool

Stefanos Zachariadis
Zuhlke Engineering
43 Whitfield Street
London, W1T 4HD

United Kingdom

zas@zuehlke.com

ABSTRACT

At a leading manufacturer of equipment for power genera-
tion, the engineers currently design a steam turbine, a key
component of a power plant, using a large number of disjoint
legacy tools written mostly in Fortran; These tools encap-
sulate significant engineering know how and are vital to the
successful operation of the company. Their age and state
pose a number of challenges, including difficulty in adapting
to new methods, maintenance costs and lack of integration;
the cost of replacing them all in one go however, has been
deemed to be prohibitively expensive. In this experience re-
port we describe our approach in developing a plug-in based
design tool using Eclipse RCP and OSGi that encapsulates
and integrates the legacy tools into a single, component-
based, extendable environment that offers the advantages of
an integrated solution while minimising the cost and disrup-
tion to the business and that allows for the gradual replace-
ment of the tools. In this paper we describe the architecture
and technology choices, why a plug - in based approach was
used, benefits for the manufacturer and outline issues we
encountered.

Keywords
OSGi, Eclipse RCP, dynamic graph, turbine engineering

1. INTRODUCTION

A steam turbine (see Figure 1) is a turbo machine that ex-
tracts thermal energy from pressurised steam and converts
it into rotary motion. The latter is then used to gener-
ate electrical energy and hence steam turbines form a key
component of a power station. The production of a steam
turbine is preceded by careful mathematical modelling and
analysis, which calculates structural characteristics based on
requirements such as power output, space constraints (par-
ticularly important in case of retrofits) as well as predicts

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

TOPI ’11 Waikiki, Hawaii USA

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Tim Cianchi
Zuhlke Engineering
43 Whitfield Street
London, W1T 4HD

United Kingdom

tci@zuehlke.com

Figure 1: Part of a steam turbine

how the machine is going to behave under different oper-
ating regimes, such as changes in temperature, steam flow
etc.

This case study describes work carried out for one of the
leading global providers of power generation and transporta-
tion equipment, which has a history of manufacturing that
can be traced back to the end of the 19th century. As such,
over the past few decades, a number of software tools have
been developed and are still used to calculate various as-
pects of the design and analysis of a steam turbine. Given
the long history of the business, these tools are disjoint and
command-line based and require manual work to create an
integrated design. As such, an engineer may have to spend
significant amounts of time using one tool to calculate a set
of numbers, which would feed into another tool, etc. to get
a complete design of the turbine and continue with the anal-
ysis. Should the analysis show an inadequately performing
design, those calculations would need to be repeated. The
legacy tools are also presenting issues due to their hetero-
geneity and age. They are written in a variety of program-
ming languages, including Fortran and environments such
as Excel, and maintaining them in order to support new
designs can be costly, as modifying them may be cumber-
some and fewer people have programming expertise in these
languages any more.

These tools however, represent a considerable investment
for the company and encapsulate complex engineering knowl-
edge; It is acknowledged that a replacement with a modern

integrated tool is necessary; Such a tool would offer produc-
tivity boosts, since the engineers would not need to work
in disparate tools, would be more maintainable and could
offer more modern features (high level validation, visualisa-
tion, etc.). The cost of replacing them in one go, however
has been deemed to be prohibitive given their pervasiveness.
In this paper we describe the Turbine Design Tool (TDT),
a plug-in oriented approach that we are using to integrate
and gradually replace these tools. This approach is plug-
in based in two ways: Firstly, it is built on top of OSGi
as an Eclipse RCP application; more interestingly, however,
we describe an approach where we encapsulate the existing
tools as individual plug-in components, which are transi-
tively composed by our framework automatically in order to
design and analyse a steam turbine in an integrated tool.
For reasons of brevity and confidentiality, this report can-
not not include all details of the architecture, but will rather
focus on the plug-in nature of TDT.

2. ARCHITECTURE

2.1 Motivation

The design and architecture of TDT described in this sec-
tion was motivated by the desire to replace the existing tools
with a more modern approach that would be integrated, of-
fer improved usability and performance and be more main-
tainable, while minimising the cost and disruption to the
business. As such, we developed a framework that allows
for the gradual replacement of the existing tools, while be-
ing extensible as to rapidly support emerging developments
in mechanical engineering and offering the benefits of an in-
tegrated solution.

2.2 Calculators

The foundation of TDT is the Turbine Domain Model, or
TDM, which is a model that represents a steam turbine. The
model allows for an object representation of structural parts
of the complete turbine, such as modules, blades, etc. along
with any attributes or parameters that may be attached to
them, such as lengths, pressures, etc. As such, when de-
signing and analysing a turbine in TDT, we are interested
in creating an instance of the model and manipulating its
attributes.

We decided to break down the computation required to
design and analyse a complete turbine into a set of discrete
calculators. A calculator is defined as a black box that re-
quires a well defined set of inputs and produces a well defined
set of outputs. The set of inputs and outputs map to values
in the Turbine Domain Model. Calculators are technology
- independent; hence the existing legacy tools were encap-
sulated into individual calculators, a process that involved
significant business analysis and requirements engineering,
to enable mapping the inputs and outputs of the calculator
to the TDM.

Since the legacy tools predate TDT and the TDM, often by
decades, calculators are domain model agnostic. We define a
path as a textual representation that represents a parameter
in the TDM. The path can be considered as a pointer to the
parameter in the TDM as it does not include its value. As
such, a calculator defines its inputs and outputs in terms of
paths. It accepts and produces input and output in terms

Binder 10Set Calculator 10Set Binder
TDM Legacy or DM
other tool

Figure 3: The interaction between calculators,
IOSets and the TDM.

l

v

calculation task

Figure 4: An example of chaining. Boxes represent
calculators, lower case letters represent parameters.

of key - value pairs called IOSets. The key of an IO0Set is
the path to a parameter and the value is the number or
string that the path points to in the TDM. Consequently,
as a calculator interfaces only via [OSets, it is independent
of the TDM and can encapsulate legacy tools. We use a
component called binder, to map to and from the TDM and
an I0Set. Figure 3 shows the interaction between the TDM,
the binder and an individual calculator.

2.3 Tasks and Chaining

Engineers require to work on and refine individual parts of
the turbine, for example the moving or fixed blade rows. We
define a calculation task as collection of parameters that rep-
resent the underlying task and need to be computed. TDT
offers a number of design (e.g. what should the width of a
blade be?) and analysis (e.g. how does the turbine behave
under varying pressure?) tasks. When an engineer selects a
task to work on, TDT uses what we call a chaining frame-
work to dynamically determine the calculators that need to
run.

The chaining work as follows:

SPDT ITB configure 8 manage L

DeEd=|=aa[E |-

&l Tasks

Design _Analyse | Repart |

~Design tasks Context
Design Fixed Elade Aerofal
Design Fixed Blade Assembly
Design Platform Fixed Blade
Design Steampath
izenerate Functional Element data for Fixed Blade
Generate Manufacturing Daka

Turhine Parks Run

El pata ™ 23 v|suahsatmﬂ

[Enter query here to search

Design Data . Analysis Results | Summary Shests | Mandfacturing Data |

| @5
@ General Machine Data
-6 Geometry
----- Fixed Blade Acrofoll
-4 Diaphragm
49 Fixed Blade Inner Platform
@ Fixed Blade Outer Platform
" Fixed Blade SpacerBand
- Tnner Ring
£ Outer Ring
@ Carrier
€ Key Arrangement
@ Joink Bolt
@ Gland Ring
----- 2 Moving Blade
=€ Thermodynamics

=€ BPM Input Data

|+

Figure 2: TDT running, showing the calculation tasks and some parameters.

1. A user selects a calculation task to be executed
2. The task is defined as a collection of parameters

3. TDT goes through all the parameters and for each of
them checks if one of the available calculators can pro-
duce it

e If no calculator is able to produce the value, then
the parameter becomes a user input

e If a calculator is found, then for each of its inputs:

— if the TDM contains a value for that param-
eter, then the value is added to the graph

— if not, then process is recursively repeated

The framework is inspired by the transitive dependency
frameworks found in tools such as the Debian package man-
agement system[3] or the Maven dependency management
approach[4]; similarly, TDT calculators describe artifacts
(parameters) that they consume (their inputs) and artifacts
that they produce (their outputs). This is graphically demon-
strated in Figure 4. The user chooses to run a calculation
task that prescribes that parameters x and y are to be com-
puted. TDT determines that parameter x can be computed

by calculator A. Calculator A requires parameters i and j as
inputs. TDT determines that i does not exist in the TDM
but can be calculated by calculator C. Calculator C requires
parameter 1. Parameter y can be calculated by calculator B,
which requires parameter k. No calculators can compute j,
k and I and if values for those do not exist in the TDM they
will become inputs and will be requested by the user prior
to execution.

TDT therefore transitively determines all the calculators
that need to execute and all the values that need to be in
place in order for the parameters determined by the selected
calculation task to be computed. The result of this process
is a directed graph® or chain of calculators and parameters,
with the leafs of the graph representing the parameters that
the calculation task encapsulates, and a set of values that
need to be inputed manually by the user. It is assumed that
only one calculator can calculate a particular value at any
time. This assumption can be validated when TDT starts.

Engineers are only exposed to tasks directly and not to
the individual calculators. Calculators are therefore effec-

!The graph produced may be cyclical or acyclical, based on
the underlying physics. We have mechanisms in place that
handle cycles by checking for oscillations and convergence,
but these are considered to be out of scope for this paper

tively plug-ins that are graphed together by TDT to calcu-
late various aspect of the turbine including the full design
and analysis. When executing a task, TDT uses the binder
to give the values that are required by every calculator and
to populate the TDM with the results of the calculation.

This approach has various benefits for the company. Most
importantly, by breaking down the computation into indi-
vidual plug-in calculators, TDT can reuse the legacy tools,
while being able to provide most of the benefits of a modern
integrated tool. Moreover, since TDT considers calculators
as black boxes and they can be tested individually, the ap-
proach allows for their gradual and individual replacement,
while keeping the overall functionality of TDT intact. Fi-
nally, as new engineering technologies and methodologies are
researched and become available, the TDM can be suitably
extended via further modelling and new calculators can be
built that encapsulate the new business logic and reused by
the framework with relative ease.

2.4 Eclipse RCP and Other Implementation
Choices

Figure 2 shows a picture of TDT running. We have cho-
sen to build TDT on top of OSGi[5] and the Eclipse RCP
platform[2]. Figure 2.4 shows a high level over view of the
software architecture. The Ul is built using a set of Eclipse
plug-ins using SWT, JFace and other libraries. It commu-
nicates with the rest of TDT via a domain controller, an
implementation of the front controller pattern[1]. The do-
main controller abstracts away from the calculators, the cal-
culation tasks that are available, the TDM and the various
services such as validation that TDT provides. All are also
offered as Eclipse plug-ins.

The plug-in architecture of OSGi / Eclipse RCP fits nat-
urally with the modular approach we have chosen via the
calculators and the chaining framework, as the framework
is calculator - agnostic and operates on sets of plug-ins (the
calculators) that can change over time. Moreover the rich
versioning metadata provided by OSGi can be used to de-
terministically denote which version of all TDT plugins was
used to work on a design; this has particular significance for
a safety - critical manufacturer, the products of which such
as a steam turbine are in production over a very long period.

Finally, the Eclipse update mechanism is used to deliver
the application and updates to the end users; The company
employs a large number of engineers working all over the
world and can benefit from the ability of the update mech-
anism to deliver updates to individual plug-ins instead of
monolithically re-delivering the complete TDT if any change
is made to the tool.

3. CONCLUSIONS

TDT is currently under development, though test releases
are becoming regularly available to key users. The initial
feedback that we are getting is highly encouraging as we
are able to deliver the integrated tool rapidly and our users
are reporting significant increases in efficiency and speed,
due to the nature of the integrated development environ-
ment. We are also able to provide a number of advanced
new features, such as validation, consistency checking and
more. The chaining mechanism also offers further opportu-
nities for improvements in the process, such as parallelising
the execution of calculators, to take advantage of modern
multi-core hardware.

ﬂr

A\

Domain
Controller

TDM »| Services

Calculators |«

\/
A
Y

[

Figure 5: The base TDT architecture.

We note that while the approach is proven to be techni-
cally sound as it begins to get used by our users and offers
significant advantages as outlined above, it also poses a num-
ber of challenges; most importantly, engineering a domain
model that is expressive enough to represent the whole tur-
bine, and mapping the inputs and outputs of legacy tools
to that model is where TDT is spending most of its effort
on. We anticipate a productive release this year, followed
by the gradual replacement of some of the underlying tools.
We have found that the plug-in based approach of wrapping
the legacy tools offers a pragmatic mechanism that delivers
a modern tool quickly and with minimal disruption.

We believe that the approach outlined in this paper can
be generalised to other software integration projects, where
individual disjoined tools that are used as components to
achieve a result are composed into an integrated product.
This would require: i) creating a domain model to represent
the end result ii) wrapping the tools iii) mapping their inputs
and outputs into that domain model and iv) using a graphing
algorithm to dynamically compose them.

4. REFERENCES

[1] M. Fowler. Patterns of Enterprise Application
Architecture. Addison Wesley, Reading, Massachusetts,
Nov. 2002.

[2] A. Kornstadt and E. Reiswich. Composing systems
with Eclipse rich client platform plug-ins. IEEE
Software, 27(6):78-81, Nov./Dec. 2010.

[3] M. F. Krafft. The Debian system: concepts and
techniques. No Starch Press, pub-NO-STARCH:adr,
2005.

[4] Maven. http://maven.apache.org.

[5] The OSGi Alliance. OSGi service platform — core
specification, Aug. 2005. Release 4.

